The dragon ant makes it into the Top10 New Species of 2017

Pheidole drogon major worker

Since 2008, the International Institute for Species Exploration in New York, USA publishes an annual Top 10 list of the new species discovered the past year. The annual list is released around May 23 to honor of the birthday of Carl Linnaeus, also known as the Father of Taxonomy.

Amidst a rat, a worm, a stingray, two plants and other arthropods, the dragon ant Pheidole drogon that was described last year by researchers in our lab made the cut to the 2017 Top 10.

Along with Pheidole viserion, Pheidole drogon – found in Papua New Guinea – owes its name to the dragon in the famed Game of Thrones book and TV series. The idea was inspired from the large spines on the back of the ant, which is revealed to be a location for muscle attachment to allow great strength in the head and mandibles.

The 2017 list of nominees also includes the bleeding ‘Bloodybone’ bush tomato, the spider Eriovixia gryffindori resembling the ‘Sorting Hat’ in the Harry Potter series, an amphibious centipede, a marine worm that look like a churro fried pastry, a South American plant which flower looks like a “Devil head”, a large spotted freshwater stingray, a millipede that continuously adds extra limbs throughout its lifetime, a vegetable-eating rat and finally a leaf-like katydid.

The institute’s international committee of taxonomists selects the Top 10 from among the approximately 18,000 new species named the previous year.

Pheidole drogon minor worker

Written by the OIST Media Section, edited by Julia Janicki.

New paper published: Patterns and processes in mountain ant metacommunities

Understanding the drivers of biodiversity patterns is always difficult due to the fact that multiple factors such as environmental gradient and spatial connectivity might contribute to the species distribution and community composition patterns simultaneously.

In a new paper just published in Ecography, we (Liu, Dudley, Xu and Economo) evaluate the effects of environmental gradients and spatial connectivity on ant taxonomic and phylogenetic diversity patterns along a 5000m elevational gradient within a complex mountainous landscape in Hengduan Mountains, a biodiversity hotspot in Southwest China.

We found that environmental gradients dominate variation in both alpha and beta diversity in this landscape, with alpha diversity strongly declining with elevation and beta diversity driven by elevational differences. We compared our system to predictions of a recent theoretical framework (Bertuzzo et al. 2016; PNAS) which synthesizes how aspects of landscape geomorphology may drive biodiversity patterns in idealized mountain landscapes. Our findings did not match the theory, we found alpha diversity is monotonically declining and within-band beta diversity is invariant with increasing elevation, but point toward ways to improve the theory. Taken together, our results show how elevation-driven environmental gradients, spatial factors, as well as landscape geomorphology together affect ant metacommunity structure in a complex mountainous landscape.

Original paper can be found here